skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thekdi, Shital"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Artificial intelligence (AI) methods have revolutionized and redefined the landscape of data analysis in business, healthcare, and technology. These methods have innovated the applied mathematics, computer science, and engineering fields and are showing considerable potential for risk science, especially in the disaster risk domain. The disaster risk field has yet to define itself as a necessary application domain for AI implementation by defining how to responsibly balance AI and disaster risk. (1) How is AI being used for disaster risk applications; and how are these applications addressing the principles and assumptions of risk science, (2) What are the benefits of AI being used for risk applications; and what are the benefits of applying risk principles and assumptions for AI‐based applications, (3) What are the synergies between AI and risk science applications, and (4) What are the characteristics of effective use of fundamental risk principles and assumptions for AI‐based applications? This study develops and disseminates an online survey questionnaire that leverages expertise from risk and AI professionals to identify the most important characteristics related to AI and risk, then presents a framework for gauging how AI and disaster risk can be balanced. This study is the first to develop a classification system for applying risk principles for AI‐based applications. This classification contributes to understanding of AI and risk by exploring how AI can be used to manage risk, how AI methods introduce new or additional risk, and whether fundamental risk principles and assumptions are sufficient for AI‐based applications. 
    more » « less